Systematic Exploration of Dual-Acting Modulators from a Combined Medicinal Chemistry and Biology Perspective

Aurelie Bornot, Udo Bauer, Alastair Brown, Mike Firth, Caroline Hellawell and Ola Engkvist

J. Med. Chem., 2013, 56, 1197-1210

(AstraZeneca R&D, UK and Sweden)

A. Manos-Turvey,
Wipf Group Current Literature
February 23rd, 2013

Drug Discovery and Development

- The cost of drug discovery continues to rise.
 - New drugs cost more than US\$1 billion to get to the end point.

Estimates of the components of drug development costs from studies providing all components and assumptions.

	Hansen and Chien [1]	DiMasi [5]	DiMasi et al. [8]	Adams and Brantner [13]	Paul et al. [3]
Cash	1963-1975	1970-1982	1983-1994	1989-2002	1995-2010
Pre-clinical	\$46.0	\$111.0	\$149.8	\$164.6	\$284.4
Clinical	\$46.0	\$81.5	\$349.0	\$383.7	\$599.2
Total	\$92.0	\$192.5	\$498.8	\$548.3	\$883.6
Capitalized					
Pre-clinical	\$89.0	\$263.7	\$414.6	\$471.5	\$834.0
Clinical	\$73.0	\$127.5	\$578.0	\$602.7	\$965.6
Total	\$161.0	\$391.2	\$992.6	\$1074.3	\$1799.6
Assumptions					
Success rate	12.0%	23.0%	21.5%	24.0%	11.7%
Cost of capital	8.0%	9.0%	11.0%	11.0%	11.0%

Notes: Figures converted to year 2009 US dollars using the US Gross Domestic Product (GDP) deflator (Bureau of Economic Analysis).

- Many drugs fail upon entering Clinical Trials.
 - O How to reduce costs while increasing drug output?

An Efficacy Perspective: Network Pharmacology

- Current medicinal chemistry has focused upon single targets BUT targets and pathways are rarely singular entities.
- Many compounds have off target effects, which can impact upon the <u>efficacy</u> and <u>toxicity</u> of compounds.
- Working on a single target is often insufficient to stem disease progression.
 - For example, Hsp90 inhibitors for cancer treatment, downstream effects of inducing production of Hsp70.

An Expanding World of Chem- and Bio-Informatics!

PubChem

public repository of screening data.

Chemble

o manually curated biomedical literature activity data.

BioPrint

o commercial database of screening data of a set of compounds against a panel of targets.

Drugbank

public database, combining drug data and target information.

GoStar

 example of a commercial database with activities extracted from journals and patents.

Polypharmacology

- DrugBank suggests a compound will average activity against 1.7 proteins.
 - Focuses on main target of drugs.
- If you consider further literature reports and predicted bioactivity:
 - o a single compound can be active 2.7 moving up to 6.3 proteins!

Aim: Enabling Specific Disease Area Analysis

- List of Targets associated with a disease area
 - o inhibitor, blocker, agonist, antagonist, positive/negative allosteric modulator.
- 5 general Medicinal Chemistry Workflows (MCW) for chemical feasibility investigation
- 2 Biology Workflows (BW) for mechanistic evaluation of opportunities
 - 1. Evidence of previous investigations of target pairs (text mining)
 - 2. Create an interaction map with targets, their bioprocesses and pathways (bioprocess mapping)
- Selection of a promising target pair combination
 - start a drug discovery project for a dual-acting modulator

Application to Gastrointestinal Disease

- Extract activity data from GoStar and BioPrint
 - O Three different activity cut-offs analysed: 10 μM, 1 μM and 100 nM.
 - 20 receptors were identified, 18 were used in the analysis.
- Two analyses possible:
 - 1. 'normal' all possibilities

OR

- 2. "strict" excludes patents without explicit activity data
 - eg. Threshold of 10 μM: 'normal' filter retrieves 217 650 vs. 'strict' which finds 105 576 different compounds.

MCW 1: Compounds Active on 2 Targets in 1 Publication

MCW 2: Active on 2 Targets in Unrelated Publications AND Molecules With Similar Structures

MCW 1 and 2

MCW 3: Validation of Target Combinations in vivo

2/23/2013

MCW 4: Similarity of Binding Cavities Between Receptors

MCW 5: Number of Privileged Scaffolds per Target Pair

2/23/2013

BW 1: Text Mining

2/23/2013

BW 1: Text Mining

BW 2: Bioprocess Mapping

BW 2 Utility

- The key factor is to provide a multi-level view to highlight similarities and differences between the two chosen receptors.
- Very labour intensive, major text mining and collaboration with biologists in the specific field is required.

Example of Utility: NK1 and MOR

- Neurokinin type 1 (NK1) and opioid receptor μ1 (MOR).
- Opioids are analgesics particularly.
- Pain management drugs are in high demand but difficult to pinpoint,
 - o neuropathic pain requires consideration of tolerance, physical dependence and CNS penetration
- NK1 binds substance P, a peptide involved with intestinal motility.
 - These pathways appear to be linked: MORs and NK1 receptors are co-expressed in the CNS
 - Chronic opioid treatment results in substance P release and up-regulation of NK1

NK1 and MOR

NK1 and MOR

R1	R2	R3	NK1 Receptor K _i (nM)	MOR K _i (nM)
3-CI	*	*—《	2.8	37
2,5-diCl	*	*——	220	19
3,4-diCl	°~°~	*—(1	540
Н	° ~ ° ~	*—	120	3

Conclusions

- Through comprehensive analysis of existing medicinal chemistry and biological data, the authors have created a way to design dual-acting modulators, avoiding poor physicochemical properties.
- Could aid in targeted fragment screening (especially looking at MCW5)
- Removal of large dual-modulators
 - These molecules are often too large to be orally available.
- Hope to find new orally available drug candidates.

Polypharmacology

